
An autonomous drone system, with intelligent flight-
planning, to effectively undertake indoor

photogrammetry

Submitted April 24th 2018, in partial fulfilment of

the conditions for the award of the degree, Computer Science (G404).

Matthew Clarke
With supervision from Steven Bagley

██████████████████
████████

School of Computer Science

University of Nottingham

I hereby declare that this dissertation is all my own work, except as
indicated in the text:

Signature: █████████

Date: 24/04/2018

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

i

Abstract

Modern online mapping tools provide users a 3-dimensional perspective view of cities and
landmarks, to allow for better visualisation of the map itself. To provide these 3D views, a
reconstruction technique, photogrammetry, is utilised over an input dataset of aerial imagery.
However, photogrammetry is not yet widely utilised for interior spaces in these online mapping
tools, which are of equal importance such as for tourism purposes.

This dissertation aims to provide 3D reconstruction for interior spaces, with an automated
system to collate a dataset of images and to automatically undertake photogrammetry upon it.
A multi-copter is utilised as the hardware platform for dataset generation, connected to
extensive ground control software through which to control its flight. Furthermore, a solution to
the problem of indoor GPS reliability is implemented via Visual Simultaneous Localisation and
Mapping, to provide appropriate positioning estimates to the multi-copter.

Word count: 15,451

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

ii

Contents

1 Introduction ... 1

1.1 General Background .. 1

1.2 Project Motivation and Overview .. 1

1.3 Aims and Objectives .. 2

1.4 Multi-disciplinary Nature of the Project .. 2

1.5 Externality .. 2

2 Research .. 3

2.1 Existing Works .. 3

2.2 Required Hardware .. 4

2.3 Flight Software and Communications .. 5

2.4 Indoor Positioning ... 6

2.5 Video Streaming .. 8

2.6 Photogrammetry .. 9

3 System Architecture ... 10

3.1 Development Methodology... 10

3.2 Design.. 10

3.3 Multi-Copter OS Considerations .. 12

3.4 MAVProxy ... 13

3.5 Video Streaming Configuration .. 14

3.6 Simultaneous Localisation and Mapping .. 15

3.7 Photogrammetry Pipeline .. 17

3.8 Flight Planning .. 17

4 Implementation – Multi-Copter ... 18

4.1 Construction .. 18

4.2 OS Configuration ... 19
4.2.1 Kernel ... 19
4.2.2 Debugging Improvements... 20
4.2.3 Wireless Communications .. 20
4.2.4 ArduPilot, gstreamer and the Remote Utility ... 21

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

iii

4.3 Testing and Calibration ... 22

5 Implementation – Ground Control Software ... 23

5.1 User Interface .. 23

5.2 System Status .. 24

5.3 Integration of gstreamer... 24

5.4 ORB-SLAM ... 25

5.5 Flight Control and Photogrammetry ... 26

6 Evaluation ... 28

6.1 Test Flights for Implemented Ground Control Software .. 28

6.2 Localisation Accuracy .. 28

6.3 Safety and Privacy .. 29

6.4 Legal Considerations .. 30

7 Summary and Reflections .. 31

7.1 Coverage of Objectives .. 31

7.2 Project Management .. 32
7.2.1 Time Management ... 32
7.2.2 External Sponsor ... 33
7.2.3 Supervisory Meetings ... 33

7.3 Future Development .. 33

7.4 Achievements and Contributions ... 34

7.5 Final Remarks ... 35

8 Bibliography .. 36

8.1 Further Reading .. 36

8.2 References .. 36

9 Appendices ... 41

9.1 Appendix A – Multi-copter Bill of Materials .. 41

9.2 Appendix B – Photography of Construction Process.. 42

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

iv

List of Figures

Figure 1: The Navio2 and the PXFmini .. 5
Figure 2: Accuracy comparison of DGPS (dark blue) against VO (red) 7
Figure 3: System architecture of ORB-SLAM ... 7
Figure 4: Example gstreamer pipeline ... 8
Figure 5: Example output from COLMAP and openMVS on a self-made dataset 9
Figure 6: ZenHub board utilised by the author to organise tasks .. 10
Figure 7: System architecture design for the Project ... 11
Figure 8: General OS image design ... 12
Figure 9: gstreamer pipeline to stream video to the ground station computer 14
Figure 10: Visual comparison of lower bitrates .. 15
Figure 11: Example waypoint generation process .. 18
Figure 12: Flowchart for sourcing components .. 19
Figure 13: Photography of components, and constructed multi-copter 19
Figure 14: Logic of the hostapd listener script .. 21
Figure 15: Logic of launch_arducopter.sh ... 21
Figure 16: Screenshot of APM Planner 2.0 .. 22
Figure 17: Screenshot of the developed GUI .. 23
Figure 18: gstreamer client-side pipeline .. 25
Figure 19: Visualisation of detected points in ORB-SLAM .. 26
Figure 20: Location of outdoor flights ... 30

List of Tables

Table 1: Output bandwidth usage for differing video parameters .. 14
Table 2: Raspberry Pi Camera Module v2.1 specifications .. 22
Table 3: Computed distortion parameters ... 22

Fonts

Example text: denotes a system component or utilised library
Example text: denotes a class name, inline code or shell command

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

1

1 Introduction

1.1 General Background

Many modern mapping solutions typically integrate 3-dimensional models of buildings to allow
users to better visualise the environment being represented; one example is that of Google
Maps[1]. These models are typically generated via a technique known as photogrammetry[2]. As
Schenk notes, “there is no universally accepted definition of photogrammetry” (Schenk, 2005)[2].
Therefore, this dissertation treats the term photogrammetry to be defined as:

“[…] the science of obtaining reliable information about the properties of surfaces and
objects without physical contact with the objects, and of measuring and interpreting this
information.”

Source: Schenk (2005)[2]

More specifically, this dissertation considers Structure-from-Motion photogrammetry, which
provides the generation of 3D objects from a set of images taken at differing angles and
translations.

Aerial photography is typically utilised to generate the required imagery to reconstruct building
exteriors, from platforms such as multi-copters, aeroplanes and satellites. Interior modelling,
however, is not typically represented in these aforementioned mapping solutions. Whilst research
does exist focusing on utilising photogrammetry for such an application, such as that from Al
Khalil et al (2001)[3], and indeed even industry focus from Swiss company Mosini Caviezel SA[4]
– whom focus on generating 2D floor plans from resulting 3D models – it can be argued that this
is a niche that can be filled for high-fidelity mapping solutions.

1.2 Project Motivation and Overview

A solution to the lack of interior 3D modelling can be achieved through allowing the user to
photograph an indoor space, and subsequently feed these images into a program implementing
photogrammetry. For a dissertation however, this is not ambitious enough, and is not novel.
Furthermore, it doesn’t provide a significant enough external aspect – it is likely there will be
little users, as copious existing photogrammetry applications provide this functionality.

To resolve this lack of novelty, the author presents the idea of producing an end-to-end interior
3D modelling solution that builds upon existing photogrammetry libraries, to produce output
with ideally a single button press in a GUI. Production of images will be handled by a moving
platform with an attached camera, with an appropriate platform being a multi-copter due to
their manoeuvrability and existing usage for outdoor photogrammetry. Utilising a multi-copter
would also be beneficial to the requirement of an external aspect to the dissertation; the end
solution can be targeted towards a hobbyist community, chiefly that of multi-copter enthusiasts.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

2

Further to the idea of utilising a multi-copter, affording it autonomous capabilities lends well to
a “single click” solution. By intelligently choosing which positions within the multi-copter’s
known surroundings to move to, an interior model can be generated with little to no prior
knowledge regarding photogrammetry on the part of the user.

Thus, this dissertation focusses upon building.

1.3 Aims and Objectives

Thus, the core aim of this dissertation is to implement an approach to indoor photogrammetry
that utilises an autonomous aerial platform, in this case a multi-copter, with intelligent and
dynamic flight planning, such that it is cost-effective enough to be utilised by hobbyists.

To achieve this aim, the following objectives will need to be met:

1. To implement duplex communication between a multi-copter and ground control station
program to send positioning commands and receive live video data.

2. To provide effective indoor localisation for the multi-copter.
3. To integrate with an existing photogrammetry library to produce both an interim 3D

model, and the final end indoor model.
4. To intelligently reason about the interim 3D model to produce a flightpath for the multi-

copter to follow.
5. To assess differing flightpaths in their ability to generate useful sets of images for

photogrammetry to be undertaken.

1.4 Multi-disciplinary Nature of the Project

The multi-copter utilised has been built from scratch to meet the cost-effective clause of the core
aim, with all components sourced and assembled by the author. Resulting from this, this project
can be argued to be multi-disciplinary, combining Computer Science with that of Electronics,
and to some degree Aerospace Engineering.

Therefore, a percentage of this dissertation covers the electronics and engineering aspects of
building this hardware; a significant degree of learning, research, and effort has been put into
the construction of the multi-copter.

1.5 Externality

In terms of externality and as stated earlier, this project aims to appeal to the wider multi-
copter hobbyist community. It is due to this that this project should be cost-effective – low-cost
solutions are far easier for a community of users to corral behind due to a lower financial
entrance barrier.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

3

To this end, the author has contacted a specific hobbyist user, in this case Dr Michael Pound of
the University of Nottingham, to ask for his input into this dissertation’s software project (“the
Project”). As a stakeholder, he has been able to provide an external aspect to the Project that
would act as an extension from the hobbyist community as a whole. This input has been wholly
invaluable, such as through providing support on construction of the multi-copter itself.

2 Research

2.1 Existing Works

To commence the Project, existing works both in literature and industry were examined. Hao et
al (2011)[5] present a prototype mobile 3D mapping system to “build dense and complete models
for his/her personal environments, running on a laptop in real-time and interacting with the
user on-the-fly”. This system utilises an RGB-D (colour and depth) camera such as the
Microsoft Kinect[6], alongside manual user guidance to map an environment. Whilst not
automated as per this dissertation’s proposal, this system provides robustness through
“[computing] 3D alignments of depth frames on-the-fly, so that the system can detect failures
[…] and prompt the user to “rewind” and resume scanning” (Hao et al, 2011)[5]. The end result of
their system provides 3D models of large indoor spaces such as an office, to a centimetre level of
accuracy. For the Project, an RGB-D camera may therefore be a key hardware component.

Focus on particular points of interest within an interior model is presented by Díaz-Vilariño et
al (2015)[7]. Their approach is that of “a data-driven method for geometric reconstruction of
structural elements using the point cloud, and a model-driven method for the recognition of
closed doors in image data based on the generalized Hough transform” (Díaz-Vilariño et al,
2015). By detecting doors in image data, their work allows for improved reconstruction of
building interiors, allowing for modelling the location of doors in relation to other interior maps.
Existing approaches such as that of Budroni and Boehm (2010)[8] rely upon low density regions
of resultant point clouds, from for example LiDAR[9] data, to find connections between rooms.
The issue here is that closed doors cannot be detected, as they are presented in such data as
regions of higher point density – highly similar to walls and other obstructions. Therefore, the
usage of both LiDAR and RGB camera data by Díaz-Vilariño et al allows for using colour
information to detect closed openings at a much better rate of success. The rationale provided
by Díaz-Vilariño et al gives a further insight into why RGB data was used in conjunction with
LiDAR: “a laser beam usually penetrates window glasses, so that no laser points are reflected,
causing areas with low raw laser information” (Díaz-Vilariño et al, 2015)[7].

Lehtola et al (2017)[10] provide an in-depth narrative comparing state-of-the-art scanning and
point cloud generation methods. The compared approaches comprise of commercial and
experimental interior mapping technologies: the Matterport 3D camera, the NavVis 3D Mapping
Trolley, the Zebedee hand-held 3D mapping system, the hand-held Kaarta Stencil, the Leica
Pegasus Backpack, the Würzburg Backpack, the Aalto VILMA, and the FGI Slammer. Details
on each platform are covered in Lehtola et al’s paper; this is recommended further reading.
Through qualitative evaluation, they found that the experimental FGI Slammer and commercial

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

4

NavVis platforms provided the most precise point clouds. Both utilise Simultaneous Localisation
and Mapping (SLAM) approaches[11] for localising themselves within the current environment,
alongside multiple laser scanners to generate these point clouds. That said, these platforms are
both wheeled, and so are restricted to flat environments. For the purposes of the Project,
multiple scanners may not be feasible; the cost of a single laser scanner is too prohibitive for
hobbyist users. Though, the methodology utilised to compare generated point clouds may be
appropriate to determine the precision of results generated by the Project.

In industry, Skydio has recently produced a fully autonomous multi-copter: the Skydio R1[12],
marketed as a “self-flying camera”. Its capabilities are impressive: highly accurate SLAM,
subject tracking through Skydio’s in-house artificial intelligence software, along with on-the-fly
route planning for the extreme near future. Powering this is NVIDIA’s Jetson TX2[13]– a 256-
core GPU alongside a quad-core 64-bit ARM CPU – along with 13 cameras for input. At a price
point of $2,499.00 this hardware is far beyond the low-cost core aim of the Project, though can
serve as a useful reference.

2.2 Required Hardware

Through the process of researching existing works, the author has remained settled on the
prospect of utilising a multi-copter for the Project, due to the manoeuvrability it allows when
generating a 3D point cloud. Care must be taken to ensure any camera installed on the multi-
copter is vibrationally isolated as mentioned by Skydio’s documentation[12]. This is since any
vibration will affect any SLAM algorithm in use, by inducing erroneous translations in the
observed physical world.

As mentioned in Section 1.3, a clause of the core aim is to be financially cost-effective for a
hobbyist. Therefore, to control the exact cost the author opted to build the multi-copter himself.
Generally, any multi-copter requires the following basic components: a frame upon which to
mount hardware, a flight controller, a battery, motors, Electronic Speed Controllers (ESCs), and
propellers[14].

To progress with research, the flight computer and camera for the multi-copter needed to be
chosen. Thus, the flight computer was chosen to be the Raspberry Pi Zero W[15], on account of
its small size and exceedingly low cost – £11. Removing the cost-effective restriction would lead
the author to instead invest in the NVIDIA Jetson TX2[13] as utilised in the Skydio R1, due to
its compute capability of 1.5 teraflops. To connect the Raspberry Pi to the motors of the built
multi-copter, an addon board was required. Two such boards exist: the Navio2[16] and the
PXFmini[17], both depicted overleaf in Figure 1.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

5

Figure 1: The Navio2 and the PXFmini
Note: The Navio2 (left) is connected to a Raspberry Pi 2, and the PXFmini (right) to a Raspberry Pi Zero.
Sources: Emlid Ltd (Updated 2018)[16] and Erle Robotics (Updated 2017)[17].

The author decided upon the PXFmini as the addon board due to two factors: it is more
optimised for the form factor of the Raspberry Pi Zero, and costs £58 less than the Navio2 yet
also provides the minimum diversity of sensors required for the Project.

In terms of camera input, existing works have demonstrated that the utilisation of both RGB-D
cameras and LiDAR in conjunction produce precise point clouds. On the lower financial
spectrum for LiDAR is that of Scanse’s Sweep[18], providing a range of 40 metres at a cost of
$349.00. Unfortunately, this alone is above the maximum budget for the Project, totalling
£250.00. Therefore, the author has directed efforts into utilising a low cost RGB or RGB-D
camera such as the Intel RealSense D435[19]. This particular RGB-D camera provides a wide-
angle lens over both stereo cameras, allowing for better tracking of rapidly moving subjects, or
in the Project’s case a rapidly changing environment due to the multi-copter’s translations and
rotations. However, this hardware was not available at the time of multi-copter construction,
instead being released during the first quarter of 2018. Also available through Intel is the SR300

RGB-D camera[20], though is far too large to fit on a multi-copter nimble enough for indoor
flight.

Due to these limitations in acquiring a suitable RGB-D camera, the author instead opted for the
Raspberry Pi v2.1 camera module[21], resulting in only a monocular RGB video stream. As
Pagnutti et al (2017)[22] have found, this camera has the capability to provide scientific and
engineering-grade output; “raw imagery is shown to be linear with exposure and gain (ISO),
which is essential for scientific and engineering applications” (Pagnutti et al, 2017)[22]. Due to
the usage of monocular input, care must now be taken when choosing a localisation approach
such that monocular input is well-supported.

2.3 Flight Software and Communications

Simply assembling hardware components is not sufficient to build a functional multi-copter; a
flight stack must be running upon the flight computer to correctly output commands to each
motor. Due the usage of the Raspberry Pi Zero W, the flight stack must be capable of running
atop GNU/Linux. Two such major projects exist: ArduPilot (APM)[23], and PixHawk

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

6

(PX4)[24]. Note that decisions regarding the flight stack need not be undertaken until building
the multi-copter’s OS image.

Before continuing, a definition must be provided for the term flight stack. Typically, such a
stack comprises of three layers: a real-time operating system, middleware providing device
drivers and peripheral support, and flight control such as telemetry and motor control[25]. In the
case of this project, the real-time operating system will be Linux with a real-time patch applied
to its kernel[26], and so will be identical between APM and PX4.

Comparing the two flight stacks end-to-end, it can be seen that APM’s base OS support is far
more varied, allowing running on: Linux, Arduino, and ChibiOS. PX4 instead requires that its
base OS has real-time capabilities, along with POSIX-compliance. At the middleware level,
differences are less apparent. Both flight stacks support the use of the MAVLink protocol to
communicate with companion computers; “a very lightweight, header-only message marshalling
library for micro air vehicles” (Meier, 2009)[27]. Differentiation occurs over which additional
communication is supported. APM provides support for both the Robot Operating System
(ROS)[28] alongside the CAN bus[29], whereas PX4 supports the Real Time Streaming Protocol
(RTSP)[30] along with the micro Object Request Broker (uORB)[31] protocol specific to PX4.

Both flight stacks were worked upon simultaneously under the Dronecode project from late
2014, aiming to foster “[a] neutral place where industry and community developers can
contribute technology in order to reduce costs and time to market” (Dronecode, updated
2018)[32]. However, the team behind ArduPilot exited the organisation due to leadership
concerns in 2016. As a result, PX4 retains a greater array of commercial partners including
Microsoft and Intel.

2.4 Indoor Positioning

Due to the aim of this project to map interior spaces, localisation of the multi-copter is a key
concern; typical GPS-based solutions are not reliable in an indoor setting[33]. To combat this,
alternative approaches can be undertaken: Differential GPS (DGPS), Visual Odometry (VO) or
Simultaneous Localisation and Mapping (SLAM).

As presented by Mertikas (1983)[34], the concept of DGPS is derived from the original
implementation of GPS by the United States Department of Defence. The concept of Selective
Availability was applied to limit the usefulness of GPS to unauthorised entities such as the
general public, with only military users able to utilise GPS’ maximum accuracy of to within 10
metres. To circumvent this issue, Mertikas proposed the technique of Differential GPS: a ground
station is placed at a known position, receives GPS signals and applies a differential correction
to improve accuracies for users connected to the ground station. Whilst no longer necessary
post-2000, this technique can still be applied to indoor positioning, with a ground station placed
at a known location outdoors relaying corrected positions to indoor GPS users.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

7

Alternatively, VO could potentially be utilised. Due to the
advent of inexpensive pinhole cameras, multitudes of
visual algorithms have been developed to extract
meaningful positioning data from a stream of incoming
video frames. As presented by Nister, Naroditsky and
Bergen (2004)[35], VO matches features between pairs of
video frames, and computes a trajectory the platform has
travelled along. The end positioning results can thus be
combined with additional sources of positioning such as
inertial sensing and GPS input. Their results comparing
VO to DGPS can be seen to the left in Figure 2. Note that
their results have been generated through the usage of
stereo cameras, which may prove challenging for this
project due to the previous decision to utilise monocular
camera input. VO has proved highly successful, to the

degree that two rovers placed on the surface of Mars make use of it to maintain a robust
position estimate (Cheng and Maimone, 2005)[36].

Building atop VO is that of Visual SLAM (V-SLAM). As Durrant-Whyte and Bailey state:

“The simultaneous localization and mapping (SLAM) problem asks if it is possible for a
mobile robot to be placed at an unknown location in an unknown environment and for the
robot to incrementally build a consistent map of this environment while simultaneously
determining its location within this map.”

Source: Durrant-Whyte and Bailey (2006)[1]

Extending from this definition, V-SLAM is the approach of utilising camera input to solve the
SLAM problem, instead of inertial or other input data. Recent developments in CPU and GPU
technologies have allowed for V-SLAM to be undertaken in real-time, due to the significant
computational cost it typically requires[37]. In terms of implementation, typically five modules
are present in any given V-SLAM algorithm: initialisation, tracking, mapping, re-localisation,
and global map optimisation[37]. A recent example of monocular V-SLAM is that of ORB-SLAM
(Mur-Artal et al, 2015)[38], with its system
architecture presented to the right in Figure 3.

This algorithm makes use of ORB to undertake
feature matching, combining the FAST feature
detector to find object corners, alongside the
BRIEF feature descriptor (Rublee et al, 2011)[39].
Initialisation is undertaken through tracking
features over multiple frames of input, resulting in
triangulation of points from which to generate a
map, though in an arbitrary reference frame. Since
these points have high uncertainty of depth,

Figure 2: Accuracy comparison of DGPS
(dark blue) against VO (red)
Source: Nister, Naroditsky and Bergen
(2004)[35]

Figure 3: System architecture of ORB-SLAM
Source: Mur-Artal et al (2015)[38]

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

8

initialisation does not complete until this uncertainty has been reduced over successive
triangulation iterations.

An alternative monocular V-SLAM algorithm is that of LSD-SLAM (Engel and Cremers,
2014)[40]. Rather than detecting features through corner detection, edges are also utilised
allowing for greater accuracy and robustness. Furthermore, the algorithm incorporates the effect
of noisy depth values into tracking to achieve this robustness. That said, the algorithm faces
difficulties if tracking is lost – re-localisation occurs by re-initialising the algorithm, effectively
shifting the origin position.

2.5 Video Streaming

To provide input into any visual-based localisation approach, data must be sourced. Due to the
flight computer being that of a Raspberry Pi, it is highly likely that the end multi-copter will be
running Linux. However, this hardware is limited on compute power, and therefore will likely
need to off-board any localisation computations to a ground station computer. In this case,
video streaming will be required to provide video data to this computer.

The most popular video streaming utility available to Linux is gstreamer, “a library for
constructing graphs of media-handling components” (GStreamer Team, updated 2018)[41]. A
pipeline for consuming and processing video or audio input can be built through gstreamer,
typically starting with an input source element and ending in a sink element; the latter may
render video to a display, for example. Furthermore, a caps element can be provided to provide
detailed metadata about expected inputs and outputs throughout the pipeline.

In terms of streaming video, gstreamer allows for providing a source element to read directly
from a connected camera, and sink element outputting over a UDP link to a specified
destination. Figure 4 presents an example pipeline to stream video:

Figure 4: Example gstreamer pipeline

An appropriate pipeline can be constructed on the ground station computer to receive input
from the resultant UDP stream.

In terms of media codecs, two were considered for video streaming: H.264 and Motion JPEG
(MJPEG). Both provide lossy compression for video, with the former also providing motion
compensation at the cost of greater computational complexity[42]. H.264 encodes a full static
frame, referred to as an I-frame, alongside Predicted frames (P-frames) and Bi-directionally
predicted frames (B-frames). Each P-frame encodes a motion vector for changes in the I-frame; a
given frame is subdivided into 16x16 blocks, where each block may not change between frames.

raspivid fdsrc
UNIX pipe

image/jpeg,framerate=15/1 jpegparse rtpjpegpay udpsink

caps element data parsing sink elementsource element

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

9

To reduce storage requirements, only those blocks with a motion vector need to be updated. B-
frames follow the same approach, except also encode future motion vectors along with any
current vectors. Therefore, an H.264 decoder uses the last I-frame and subsequent P-frames
alongside B-frames to reconstruct any given frame of video.

Conversely, MJPEG simply encodes each frame of video as a JPEG image[43]. This is far less
computationally complex than H.264, and so can easily run on any commodity hardware.
However, outputted video is compressed at a lesser rate compared to H.264, giving larger output
sizes. Therefore, if using MJPEG care must be taken to configure the framerate, bits-per-second
and resolution of input video to ensure bandwidth limitations are taken into account.

2.6 Photogrammetry

As stated in Section 1.1, this dissertation only considers Structure-from-Motion (SfM)
photogrammetry, providing the generation of 3D objects from monocular camera inputs. The
general approach as outlined by Micheletti et al (2015)[44] for SfM is to capture multiple views of
an object from a range of positions, identify common features across the images, and
subsequently transform these features into 3D co-ordinates to be presented in a sparse point
cloud. This point cloud can then be pipelined into Multi-View Stereo (MVS)[45] techniques to
densify the point cloud, resulting in a textured 3D model.

In terms of specific implementations of SfM photogrammetry, multitudes exist. The public notes
of Falkingham (2017)[46] have been instrumental in researching existing implementations. His
findings showed that the combination of COLMAP[47] and openMVS[48] to generate a point cloud
and densify it to a 3D model respectively produced the most accurate results.

The author has generated an example output using this combination of software to test
accuracy. Figure 5 below shows the model generated from a self-made dataset of 150 images at a
resolution of 640x480 pixels, taken from an iPhone X with automatic ISO and white balance:

Figure 5: Example output from COLMAP and openMVS on a self-made dataset

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

10

Whilst not completely true to the physical space, these models prove that this combination of
software is viable. Thus, work will need to be done to ensure input images are sufficient enough
to generate high-quality output models.

3 System Architecture

The system produced to meet the core aim of the Project provides the necessary inter-
communication between the disparate research areas covered by Section 2.

3.1 Development Methodology

The general development methodology has been an individual-orientated SCRUM[49]-based
approach; there is no need for morning stand-up meetings, and supervisor meetings are typically
treated as end-of-sprint meetings. However, this was not strictly enforced in the first half of the
Project, as the time required for multi-copter construction proved extremely variable.
Furthermore, ZenHub[50], a web application integrating with GitHub that allows for moving
issues on a project through a pipeline, has been utilised to organise tasks. A screenshot is
provided below in Figure 6:

Figure 6: ZenHub board utilised by the author to organise tasks

Since Dr. Michael Pound is a stakeholder as mentioned in Section 1.5, it also has been necessary
to ensure he remains updated on the Project’s progress. The majority of communication with
him has been over email and some face-to-face interactions. Overall, this communication has
related typically to the construction of the multi-copter, due to his expertise in the matter.

3.2 Design

The system built for this project is multi-threaded and also comprises of multiple processes. Due
to the complexity of integrating components such as localisation and photogrammetry, each
major subsection of the Project was designed as a module of the whole. Figure 7 overleaf shows
this modular design in full.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

11

Figure 7: System architecture design for the Project

Of the components of the diagram, the following are third-party: COLMAP, openMVS, V-SLAM
and gstreamer.

Four modules have been designed; telemetry, console I/O, photogrammetry and localisation. The
first handles incoming packets from the multi-copter, and processes them to provide, for
example, battery statistics for the GUI. Second, the console module affords the user an
interactive command-line style interface to communicate directly to the multi-copter, and to
view messages that are written to the standard output (stdout) of the system. The third
module, photogrammetry, provides the necessary implementation to interact with both COLMAP
and openMVS. Alongside this, this module also generates waypoints for the multi-copter to
navigate to. To enable waypoint navigation, the localisation module is required to generate
positioning data based upon incoming video frames. This communicates with the to-be-defined
approach to localisation running in a separate process.

Communications UI Manager
Video Stream

Manager

Telemetry and

multi-copter status

Console input and

output
Localisation

Photogrammetry

pipeline and multi-

copter control

WiFi link

Multi-copter status'

Vi
de

o
fra

m
es

Vi
de

o
fra

m
es

C
am

er
a

po
se

Po
si

tio
n

up
da

te
s

gstreamerVideo stream

GUI

G
U

I M
es

sa
ge

s

COLMAP openMVS

Camera frames

V-SLAM

Fr
am

es

st
do

ut

R
aw

 c
am

er
a

in
pu

t

Key:

Input

Output

Inter-process

Communication

Process

Multi-copter

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

12

The main process of the system co-ordinates each of these modules, by providing three
“management” objects: Communications for sending and receiving messages from the multi-
copter, UI to send and receive messages from the GUI process, and Video to arbitrate incoming
video frames from the gstreamer thread.

3.3 Multi-Copter OS Considerations

As discussed in Section 2.2, the Raspberry Pi Zero W (RPi) has been utilised as the flight
computer for the multi-copter. In terms of software, it was decided to base the operating system
(OS) of the multi-copter on Linux, due to the author’s pre-existing familiarity with it.
Furthermore, this ensures that either ArduPilot or PixHawk can be utilised as the flight
stack with no change to the underlying OS. In addition, an example OS image is provided by
the manufacturer of the PXFmini addon board utilised – Erle Robotics[51] – which is also Linux-
based.

Unfortunately, this example OS could not be utilised as a basis; any derivatives are non-
redistributable, requiring pre-purchase of hardware from Erle Robotics to access the image.
Thus, the author opted to design an OS image from scratch. Due to the low compute power
available to the RPi, the system components in use must be as minimal as possible. Curiously,
the example OS ships with additional components that are simply not necessary, including a
copy of the popular sandbox game Minecraft[52].

In terms of the flight stack, ArduPilot was chosen. The primary reasoning for this was due to
its greater maturity over PixHawk, with the assumption that the flight control layer has
received a greater degree of testing and stability adjustments. Furthermore, its inclusion in the
example OS provides a useful reference as to how it should be configured.

The general design of the OS image can be found below in Figure 8:

Figure 8: General OS image design

ArduPilot

Remote Utility
(Shutdown, Reboot)

Port 14551

hostapd listener gstreamer
Port 5600

systemd

Ground Station
Configuration

launch_arducopter.sh

Starts

Sp
aw

ns

Sp
aw

ns

Spawns

Requests restart (ArduPilot, gstreamer)

hostapd

R
ea

ds
 IP

 o
nl

y

Reads

Updates

Starts

Ground Station
Computer

Network
Configuration

Reads

Sy
st

em
 c

om
m

an
ds

Video stream

W
iF

i c
on

ne
ct

io
n

Telemetry and positioning commands

System boot

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

13

As can be seen in Figure 8, all components are started by systemd, providing “a system and
service manager that runs as PID 1 and starts the rest of the system” (freedesktop.org, updated
2017)[53]. The shell script launch_arducopter.sh is started by systemd, which spawns
three sub-processes: a listener for changes regarding devices connected to the WiFi hotspot
generated by hostapd, ArduPilot itself, and the gstreamer pipeline to stream video to the
ground station computer. Note that hostapd, gstreamer, ArduPilot and systemd are not
developed by the author.

A WiFi hotspot is generated by the multi-copter to allow the user to connect without needing to
configure an external WiFi hotspot. Since IP addresses assigned to connected devices may
change, and since ArduPilot treats the ground station computer as a server, an up-to-date
record of which IP address represents the ground station computer is required. When a change
is detected regarding connected devices, a configuration file referencing the ground station
computer is updated, recording its IP address alongside a user-configurable port to connect over.
ArduPilot and gstreamer are subsequently restarted to utilise these configuration changes.

Furthermore, a Remote Utility is present to process system-related commands from the ground
station computer, such as to shutdown or reboot the OS. This runs separately from
ArduPilot, ensuring that some degree of control can still be maintained in the event the flight
stack crashes.

3.4 MAVProxy

To ensure cross-compatibility between both ArduPilot and PixHawk if the user decides to
change the flight stack, MAVLink was chosen to be the communication protocol to the multi-
copter. However, there are multitudes of messages supported by the protocol; for the full listing,
see the further reading in Section 8.1. Therefore, it falls outside the Project’s scope to implement
the protocol.

Existing projects are available that implement the majority of the protocol, with MAVProxy[54]
being a key open-source and extensible example. Developed by CanberraUAV initially for
competing in the 2012 UAV Outback Challenge[54], MAVProxy supports running atop any
POSIX-compliant operating system. Furthermore, the capability is provided to extend
MAVProxy through building additional modules written in Python. These modules have full
duplex communication with the multi-copter, such as the ability to request a take-off, and to
monitor system status.

Thus, MAVProxy was chosen as the basis of this project, with all architecture as presented in
Figure 6 implemented as module to it. This also dictates the programming language of the
Project: Python. Ideally, no modifications to MAVProxy itself need to be made, allowing for
updates produced by CanberraUAV to be incorporated without breaking core functionality of
the Project. Another benefit of utilising MAVProxy is that the author’s own module has the
capability to communicate with other modules bundled with MAVProxy, greatly reducing
development efforts for mundane lower-level details, such as calibrating the multi-copter.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

14

An interesting challenge at this point of the Project was uncovered: the author has little prior
experience with Python. Therefore, all learning of the language must be undertaken alongside
developing the architecture of presented in Figure 6. Whilst this has the potential to lead to
inferior code quality, the author has treated this requirement as an opportunity to broaden his
skillset. Furthermore, Python is cross-platform, and so ensures that nobody in the hobbyist
community will be discriminated against in their choice of desktop operating system.

3.5 Video Streaming Configuration

As prior shown in Figure 8, gstreamer is utilised to stream video from the multi-copter to the
ground station computer. The pipeline utilised to undertake this is highly similar to that
presented in Figure 4, with the exact shell command utilised shown below in Figure 9:

raspivid -t 0 -cd MJPEG -w 640 -h 480 -fps 15 -b 1500000 -o - | gst-launch-1.0 fdsrc !
"image/jpeg,framerate=15/1" ! jpegparse ! rtpjpegpay ! udpsink host=XXX.XXX.XXX.XXX
port=5600

Figure 9: gstreamer pipeline to stream video to the ground station computer

Initially, the raspivid utility, built-in to the OS image, is utilised to read directly from the
camera hardware. Here, the output resolution, codec, framerate and bitrate are hardcoded at:

Resolution: 640 pixels wide by 480 pixels high
Framerate: 15 frames per second
Bitrate: 1500000 bits per second
Codec: Motion JPEG (MJPEG)

Initial testing of video streaming showed that ArduPilot typically utilises on average 75%
CPU, leaving scarce resources for video encoding and streaming. Therefore, the greater
computational cost of H.264 could not be afforded after accounting for hardware acceleration.
This is due to the maximum amount of RAM available on the RPi being allocated for the CPU
to access, and subsequently ArduPilot to utilise, leaving only 16MB for the GPU. Therefore,
MJPEG was utilised as the video codec. However, the outputted stream is less compressed
compared to using H.264, and so the framerate, resolution and bitrate needed to be reduced to
conserve bandwidth. Table 1 below shows a range of parameter values, and output traffic for a 5
second example video:
Table 1: Output bandwidth usage for differing video parameters

Resolution (w×h px) Framerate (frame/s) Bitrate (bit/s) Output Traffic (KB/s)
1920×1080 (control) 60 340000000 4080

1920×1080 30 170000000 2040
1920×1080 15 85000000 1020
1280×720 60 240000000 3560
1280×720 30 120000000 1780
1280×720 15 60000000 890
640×480 60 110000000 1640
640×480 30 55000000 820

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

15

640×480 15 27500000 410
640×480 15 10000000 410
640×480 15 5000000 410
640×480 15 2500000 410
640×480 15 1500000 300
640×480 15 1000000 280

Table 1: Output bandwidth usage for differing video parameters

For each table row, the example video has been converted from the control video file via
FFmpeg[55] with the presented parameters. The output traffic is calculated by dividing the file
size of the converted video by 5, due to its length of 5 seconds.

Bitrate: 1000000 bit/s Bitrate: 1500000 bit/s Bitrate: 2500000 bit/s

Figure 10: Visual comparison of lower bitrates

Due to the greatly reduced bandwidth usage compared to higher resolutions, a resolution of
640×480 and framerate of 15 was chosen. Figure 10 shows the difference in video quality at
lower bitrates with this resolution and framerate. At 1000000 bits/sec, there are significant
visual artefacts, yet little reduction in bandwidth compared to 1500000 bits/sec. Thus, the
bitrate of 1500000 bits/sec was chosen due to its further reduction in bandwidth usage with
little visual artefacts.

The streaming pipeline terminates in a udpsink element directed at port 5600 on the ground
station computer. This choice of port was guided by the documentation of existing ground
control software, qGroundControl[56], which expects a UDP stream of video input on port 5600.
Therefore, any multi-copter configured for this software should also function as expected with
the software produced for this dissertation.

3.6 Simultaneous Localisation and Mapping

Multiple approaches to indoor localisation were presented in Section 2.4: Differential GPS
(DGPS), Visual Odometry (VO) and Visual Simultaneous Localisation and Mapping (V-SLAM).
Due to the need for users to utilise an external station to undertake DGPS, it was dismissed as
a potential option. Since V-SLAM is built atop VO, it was decided to make use of an existing V-
SLAM algorithm to provide position estimates, taking advantage of the most recent research in
the field.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

16

As Section 2.2 stated, only a singular RGB camera is installed on the multi-copter. Therefore,
the V-SLAM algorithms that can be potentially utilised are restricted to those supporting RGB
monocular input. Of these, two were shortlisted: ORB-SLAM and LSD-SLAM, both discussed in
some detail in Section 2.4. Deciding which to utilise was simplified through comparing their
robustness at recovering from loss of localisation. This is a key issue, since if localisation is lost
for an extended period during flight, the multi-copter is likely to behave in an undefined
manner. Since LSD-SLAM cannot recover without shifting the origin position, ORB-SLAM was
chosen as the algorithm to be utilised.

To integrate the position estimates generated by ORB-SLAM, some understanding of how GPS
data is handled within ArduPilot is required. To estimate the multi-copter’s current position
in 3D space, ArduPilot fuses accelerometer, gyroscope, magnetometer and barometer
(collectively, IMU) data in an Extended Kalman Filter[57] (EKF), alongside optional GPS
positioning data. This produces extensive outputs, including a quaternion defining the current
attitude of the multi-copter along with current air-speed velocity, and as mentioned a 3D
position.

At the time of architecture design, ArduPilot did not support input of visual position
estimates into the EKF. As such, it was required to generate faux GPS co-ordinates from the
estimates provided by ORB-SLAM, treating the position [0,0,0] as the origin in both the EKF’s
and ORB-SLAM’s reference frames.

Due to the significant processing requirements ORB-SLAM demands, the flight computer cannot
run this algorithm on-board. Therefore, due to the likely availability of a reasonably powerful
CPU on the ground station computer, it was chosen to off-load ORB-SLAM to the ground
station. Faux GPS co-ordinates can then be transmitted over MAVLink to ArduPilot’s EKF
through the GPS_INJECT_DATA MAVLink message[58].

Off-loading positioning in this manner does lead to the multi-copter being tethered to the range
of the WiFi link to the ground station computer. If flown beyond WiFi range, the multi-copter
will not receive further positioning data, and will be forced to rely upon only IMU data to
estimate its current position. However, this is not a concern for this project, since indoor flight
restricts the distance the multi-copter can travel sufficiently to remain within coverage of the
ground station computer.

Further to this, latency is incurred during localisation; the transmission time of faux GPS co-
ordinates along with the computation time for localisation can potentially reach 500ms. Thus,
the multi-copter will be forced to move at a low velocity to ensure it doesn’t fly too far before
its current position is correctly updated. However, this is not an issue, as a low velocity is
required for indoor flight to allow for greater manoeuvrability in such a constrained
environment.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

17

3.7 Photogrammetry Pipeline

As stated in Section 2.6, the public notes of Falkingham (2017)[46] showed that the combination
of COLMAP and openMVS, to generate a point cloud and densify it to a 3D model respectively,
produced the most accurate end results. Therefore, COLMAP and openMVS were chosen to be
integrated as an end-to-end pipeline to generate a 3D model as per the Project’s aims.

To generate images for this pipeline, it was chosen to request the multi-copter to travel to
specific waypoints in 3D space. These waypoints are simple 3D co-ordinates relative to the
origin of the multi-copter’s reference frame. ArduPilot provides the capability to undertake
such waypoint-based navigation via a single MAVLink message containing a 3D co-ordinate,
provided that input (faux) GPS data is both present and providing a reasonable degree of
accuracy. At each waypoint, the multi-copter is commanded to rotate 360 degrees, stopping at
45-degree increments to record an image from the camera. A subsequent waypoint is then
specified, repeating the process until sufficient image data is generated.

Once sufficient image data has been generated, the multi-copter is requested to land ideally at
the origin of its reference frame. The photogrammetry pipeline is then undertaken to process the
generated dataset, resulting in a 3D model presented to the user. This model is to be
represented in the standardised Wavefront OBJ format[59], allowing for simplified exporting on
the part of the user.

Throughout the flight, it was decided to visually represent the progress of generating the dataset
on the GUI, in the form of rendering an up-to-date point cloud generated by COLMAP. However,
this may prove difficult due to the time taken to generate a point cloud being exponential in
accordance with the count of images in the dataset. More specifically, the time taken is O(N2),
due to the need to match each image’s features with all other images’ features to triangulate
each feature in this point cloud.

3.8 Flight Planning

To achieve the aim of autonomy, the waypoints utilised as discussed in Section 3.7 are to be
generated automatically. The end goal is from the central position of a given indoor point cloud,
all furthest edges should be interconnected high-density regions, assuming that they represent
walls, the floor and ceiling of the interior space. Therefore, if a low-density region is adjacent to
a high-density region, it can be assumed it has not yet been mapped fully.

Waypoints are generated in a best-effort approach to cover these less dense regions. For each
new waypoint, the closest “area of disparity”, a high-density region adjacent to a low-density
region, to the multi-copter’s current position is found. The new waypoint is then generated by
taking the point of the high-density region closest to the low-density region at a pre-specified
altitude, then translating it towards the most central point of the entire point cloud by 2
metres. An example of this process is found overleaf in Figure 11.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

18

Figure 11: Example waypoint generation process

To gain access to a point cloud upon which to generate these waypoints, two approaches can be
utilised. First is through the photogrammetry pipeline; COLMAP generates a point cloud through
Structure-from-Motion, which can be updated with new images without the requirement of re-
processing all previous images. The advantage here is that the point cloud generated is written
to disk after processing new data and so can be readily read when required. However, the
drawback is that time must be spent waiting for this cloud to be re-generated after
accumulating new imagery, leading to the multi-copter idling whilst airborne and thus draining
its on-board battery.

Alternatively, ORB-SLAM’s internal point cloud can be utilised. After features are extracted
from input video frames, each is represented as a point in a sparse point cloud. Therefore, by
extracting this point cloud, it will be possible to gain some understanding of the physical world
upon which to generate waypoints. Due to localisation requiring an up-to-date point cloud, the
multi-copter needn’t wait for a new cloud to be generated; it is updated in real-time. However,
this approach does have a major drawback owing to the usage of the FAST feature detector in
ORB-SLAM. Since FAST detects only the corners of objects, the resultant point cloud will not
provide representation of feature-less objects such as walls. Therefore, either the approach
described previously will need to be adjusted to handle this issue of sparseness, or an alternative
Visual SLAM (V-SLAM) algorithm that generates an appropriately detailed point cloud, such as
LSD-SLAM, may be utilised.

It was chosen to utilise the point cloud generated through COLMAP to generate waypoints, due
to the sparseness present in ORB-SLAM’s point cloud. That said, real-world testing will show
whether utilising the point cloud of an alternate V-SLAM algorithm is more appropriate.

4 Implementation – Multi-Copter

4.1 Construction

Since the author began the Project with no prior knowledge base on how to build the multi-
copter, and with little skill in electronics, there was significant degree of knowledge to obtain.
This knowledge has been generated through a number of online resources, typically through
practical-orientated articles on the topic, along with asking questions to an acquaintance of the
author over the Twitter social media platform.

High-density Low-density

Closest pointTranslation

of 2

metres

New waypoint

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

19

To begin construction, the author perused Liang’s (Updated
2017)[14] article on the typical components required for a multi-
copter. This gave a listing of components to source: a frame,
Electronic Speed Controllers (ESCs), motors, and a battery.
Choosing of these components was greatly guided by an article
published by Jacobs (2017)[60], providing a tremendously useful
flowchart reproduced in Figure 12 to the right.

A full listing of the components sourced can be found in the Bill of
Materials presented in Appendix A. The cost of the multi-copter
totalled £235.48, within the budget of £250.00 as defined in Section
2.2. For reference, the Parrot Bebop 2[61], which also communicates
over MAVLink with similar hardware, retails at £449.99.

Once all components had been ordered and subsequently delivered,
construction commenced. The steps followed are outlined in
Appendix B. During the latter half of the Project, the author designed and 3D printed an
enclosure for the Raspberry Pi and PXFmini assembly from ABS plastic. Photography of the
components and finished multi-copter can be found below in Figure 13:

Figure 13: Photography of components, and constructed multi-copter

4.2 OS Configuration

4.2.1 Kernel

To build the operating system (OS) image for the multi-copter, the author first reverse
engineered the configurations made by Erle Robotics in their example OS image. It was found a
real-time pre-emption patch[26] was to be made to the Linux kernel, required by ArduPilot to
improve the response time of the Linux kernel to physical events. To achieve this, the author
cloned the Linux kernel via git, version 4.4.50 to be precise, inside a Linux virtual machine and
applied the patch before cross-compiling the kernel for the Raspberry Pi (RPi). Whilst this is an
older version of the Linux kernel at the time of writing, changes made to the handling of I2C[62]
devices in the 4.9 kernel tree cause issues with ArduPilot and so cannot yet be utilised.

The resultant kernel binaries were packaged inside a Debian archive[63] for easier installation on
the RPi, and also allowing for easier distribution of these binaries to end users. Once the kernel

Figure 12: Flowchart for sourcing
components
Source: Jacobs, A. (2017)[60]

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

20

was installed, the author adjusted hardware settings on the RPi; I2C, SPI, serial over the GPIO
pins and uart were all enabled. These are pre-requisites for allowing ArduPilot to
communicate with the PXFmini addon board from the RPi.

4.2.2 Debugging Improvements

For improved debugging, the author opted to enable Ethernet over a USB connection to the
RPi. A scarcely advertised feature of the RPi Zero specifically is that of USB On-The-Go
mode[64]. This is a specification introduced in 2001 allowing a USB port to be dynamically
configured as a USB master or as a USB slave. In terms of definitions, the former allows other
USB devices (also: slaves) to connect to itself to then undertake I/O on them, with the latter
being that of a USB device. In this case, the RPi was configured such that its micro-USB port
acts as a USB slave, advertising a virtual Ethernet connection.

After configuring the micro-USB port of the RPi, a micro-USB to USB-A cable could be utilised
to construct an Ethernet connection between the author’s development machine and the RPi.
This then allowed for an SSH connection to be undertaken over static IP addresses configured
on both ends, without the need for a functional wireless connection. The benefits of this were
found to be the “loosening of a tether” from pre-configured WiFi networks for SSH access into
the RPi, along the ability to easily recover from incorrect WiFi configurations made in Section
4.2.3.

4.2.3 Wireless Communications

As mentioned in Section 3.3, the multi-copter generates its own access point for others to
connect to. This was achieved through the combined usage of hostapd and udhcpd, providing
the access point itself and IP address allocation via DHCP respectively. The notes of
Chaharbakhshi (2017)[65] proved fruitful in configuring this access point, alongside
simultaneously allowing the RPi to connect as a client to other WiFi networks. This capability
is made possible through the chipset installed on the RPi for WiFi connectivity, and can be
enabled through adding a new virtual wireless device for hostapd to broadcast on. Whilst
additional configuration is required, simultaneously advertising an access point along with
connecting to other networks allows for providing simpler Internet access to the RPi. Without
it, there is a need to periodically switch between configurations for running as an access point or
as a client when requiring Internet connectivity; this is not practical for development.

Alongside this configuration is the hostapd listener described in Section 3.3. This has been
implemented as a script ran whenever device connection states change, and is provided to
hostapd as a command-line option. The main state change observed is AP-STA-
CONNECTED[66], communicating that a new device has connected to the access point. The script’s
logic is presented overleaf in Figure 14.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

21

Figure 14: Logic of the hostapd listener script

The check if other devices are connected is a simple approach to ensuring new connections
cannot hijack the multi-copter whilst in flight. For example, if a flight was in session when a
new device connected, the resultant restart of ArduPilot to update configuration details would
cause the multi-copter to behave in an undefined manner.

4.2.4 ArduPilot, gstreamer and the Remote Utility

Configuring ArduPilot in the operating system (OS) image was found to be simple. To start
the flight stack, its binary is executed as root, with optional command line parameters. These
parameters define the IP address of the ground station computer and where to write generated
log files on the filesystem. A script was written to automate starting ArduPilot on system
boot through a systemd service: launch_arducopter.sh, as referenced in Figure 8. The
logic of this script is presented below in Figure 15:

Figure 15: Logic of launch_arducopter.sh

After writing new configuration changes to arducopter.conf, the hostapd listener requests
systemd to restart ArduPilot and gstreamer. This occurs by systemd executing the
script with the Stop flow, and subsequently the Start flow as shown above.

To process ground station commands such as a request to reboot or shutdown the multi-copter,
a Remote Utility was implemented in Python. This is a small WebSockets[67] server that listens
for incoming messages on port 14551. Each message is a serialised dictionary object, containing a
mandatory message identifier to differentiate incoming commands, along with arbitrary data
relevant to each command. Communication is duplex; results of commands are sent back to the
client over the same WebSockets connection.

APSTACONNECTED

received

Check if other
devices are
connected

Get IP address for
connected device

Update
arducopter.conf

Restart
arducopter.service

Exit scriptAnother device is already connected

Start

Stop

systemd

Read
arducopter.conf

Start ArduPilot with
IP and port from

configuration

Start gstreamer
pipeline

Kill any running
instances of ArduPilot

and gstreamer

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

22

4.3 Testing and Calibration

Once built, the multi-copter needed to be
calibrated and then tested. To undertake this,
the author utilised an existing MAVLink-aware
program; APM Planner 2.0, with a screenshot
available to the right in Figure 16. This
software provides graphical output of telemetry
data, allows for starting (also: arming) the
motors, specifying waypoints, and also for
controlling the multi-copter via a gamepad over a
UDP link. It also provides the capability to calibrate the sensors on-board the multi-copter,
which occurs by moving the multi-copter in all 6 degrees of freedom.

Outdoor testing of the multi-copter was undertaken; indoor testing was not yet an option, as the
author was unsure of how responsive the multi-copter would be to input. This was a wise
decision, as the first of these tests saw the multi-copter accelerating upwards rapidly and veering
wildly to the left. Regarding test results, it was found that the motors began spinning once 50%
throttle was reached, which was far more than necessary to conduct a hovering behaviour. Also,
the gamepad used for manual control had tremendous latencies when manually controlling the
multi-copter, with severe adverse results occurring on the second outdoor test. Suffice to say, the
author recommends a risk assessment to be undertaken for future work, due to personal injuries
acquired.

Calibration of the multi-copter’s camera was also undertaken to find its distortion parameters.
Modern pinhole cameras have a major drawback: constant image distortion, due to large-scale
manufacturing processes[68]. This distortion is typically a systematic error, and so can be
corrected through remapping after calculating a given camera’s distortion parameters. This is of
high importance due to the usage of OpenCV in ORB-SLAM, which expects input images to be
undistorted before undertaking any processing. Calibration was achieved through the
recommended approach for OpenCV: capture multiple images from differing angles of a
checkerboard pattern with known size then execute the provided calibration script from
OpenCV. The RPi camera module’s technical specifications along with calibration results are
found below in Table 2 and 3 respectively.

Sensor Sony IMX219 Focal length X 499.523
Sensor Resolution 3280 × 2464 px Focal length Y 498.172
Pixel Size 1.12µm × 1.12µm Optical centre X 320.742
Focal Length 3.04 mm Optical centre Y 242.846
Horizontal field of
view

62.2 degrees

Vertical field of view 48.8 degrees

Table 2: Raspberry Pi Camera Module v2.1 specifications
Source: Raspberry Pi Foundation (2016)[69]

Table 3: Computed distortion parameters

Figure 16: Screenshot of APM Planner 2.0

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

23

5 Implementation – Ground Control Software

As stated in Section 3.4, the ground control software (GCS) has been implemented in Python as
a module to MAVProxy, with the localisation subprocess utilising C++.

5.1 User Interface

For simplicity on the part of the user, all functionality provided in the GCS is presented in a
GUI. This is implemented through the wxPython library, “[a] cross-platform GUI toolkit for the
Python language” (wxPython Team, updated 2018)[70], and can be viewed below in Figure 17.

Figure 17: Screenshot of the developed GUI

The GUI itself is ran inside a subprocess to the main process of the GCS developed, with duplex
inter-process communication achieved via UNIX pipes. Messages sent over this duplex link are
serialised dictionary objects, each containing a hardcoded identifier string referencing a tuple of
a sub-section (also: panel) of the GUI and a sub-module of the main process.

This messaging approach is not dissimilar to the Blackboard architecture for Artificial
Intelligence, wherein “a global database […] mediates all communication within a system” (Craig,
1995)[71]. The general idea is to place all data in a globally accessible manner, with a number of
Knowledge Specialists acting on the data in turn to contribute towards an end solution. To
compare to this Project, each message sent to the GUI is accessible by all panels, with a
scheduler mediating access based upon the identifier string of the message.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

24

The DroneMainWindow class handles this message scheduling via forwarding incoming messages to
the appropriate panel based upon the identifier string, and ensures each discrete panel is drawn
to the user’s display correctly. Each panel is a separate subclass of BasePanel, ensuring a
polymorphic approach to providing panel classes with expected base functionality. This base
class provides an abstraction over sending messages from the GUI back to the GCS’ main
process, along with a default implementation of UI elements.

Note that the licensing requirements of the utilised iconography have been upheld through
appropriate attribution in the source code.

5.2 System Status

Displaying the current status, such as battery conditions, of the multi-copter is of use both
during development and to the end user. Furthermore, MAVProxy presents a command-line
interface to the user by default, which becomes in-accessible if a GUI is visible. Therefore, two
panels were created, both visible in the left-hand side of Figure 17: display of system status and
important controls, and an interactive console. Two sub-modules within the GCS’ main process
were also created, handling the backend of each panel respectively. Each sub-module is sub-
classed from SubmoduleBase, again providing convenience functionality to child classes.

The system status panel integrates both data received from regular MAVLink-based updates
from the multi-copter, along with user-facing controls to the Remote Utility implemented in
Section 4.2.4. These updates comprise of data such as the current battery level and current
attitude of the multi-copter. Once received in the system status’ sub-module, this data is sent as
a message through to the corresponding panel. The user-facing controls of the Remote Utility
are presented as three buttons: Shutdown, Restart and Connect. Once pressed, these buttons
generate an appropriate message sent back to the system status’ sub-module, to be subsequently
parsed and forwarded to the multi-copter’s Remote Utility server on port 14551.

Regarding the interactive console, the user is afforded two text regions: display of stdout
messages, and a command input box. To feed the former with data, the sub-module handling
the console overrides Python’s standard implementation of stdout, and instead redirects each
write to it into a message sent to the console panel. The textual content of this message is
subsequently written to the display region. For the command input box, the user’s current input
is messaged to the backing sub-module on each press of the Return key, whereupon it is
forwarded to MAVProxy to process.

5.3 Integration of gstreamer

Integration of gstreamer was achieved through implementing a “management” class:
VideoStreamManager. Along with forwarding incoming video frames throughout the GCS, it also
handles the construction of the client-side gstreamer pipeline, defined overleaf in Figure 18.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

25

udpsrc port=5600 !
application/x-rtp,format=(string)RGB,media=(string)video,clock-
rate=(int)90000,encoding-name=(string)JPEG,a-framerate=(string)15.000000,a-
framesize=(string)640-480,payload=(int)26 !
rtpjpegdepay ! jpegparse ! jpegdec !
videoconvert ! video/x-raw,height=480,width=640,framerate=15/1,format=RGB !
dronemappingvideosink

Figure 18: gstreamer client-side pipeline

This pipeline comprises of multiple stages. First, the source element receives a UDP stream of
data on port 5600. Next, this input is afforded metadata by a caps element, whereupon each
frame of video is decoded into an in-memory JPEG through rtpjpegdepay, jpegparse then
jpegdec. Finally, this in-memory representation is converted into an RGB bitmap, and passed
through into a custom sink element: dronemappingvideosink. This final element has been
implemented by the author using the Python-to-C bindings of gstreamer, encapsulating each
incoming RGB bitmap into an object of type GdkPixbuf – available in the GDK Python
library[72]. These encapsulated objects are then forwarded into the singleton instance of
VideoStreamManager.

Ensuring that incoming frames are distributed throughout the GCS is achieved through “object
registration”. Each object expecting video input is maintained in an internal array of the
VideoStreamManager singleton instance. Once a new video frame is available, this array is
iterated through, calling handle_videostream() on each object in turn with the new frame as a
parameter.

The conversion of the in-memory JPEG to RGB data was included as a result of a severe issue.
Beforehand, as frames arrived they were encapsulated into a GdkPixbuf object correctly, though
when displayed in the GUI each colour channel was rendered separately in vertical stripes. The
cause of this was each frame of the MJPEG stream represented each colour channel as a
separate contiguous block of pixel values. However, it was expected that the channels were
instead combined as 24 bits per pixel; 8 bits per channel. The inclusion of the videoconvert
pipeline element resolved this issue with no additional work on the part of the author.

5.4 ORB-SLAM

As stated in Section 3.6, integration of ORB-SLAM has been off-loaded to the ground station
computer. This has been implemented with two major components, the first being an additional
sub-module to the GCS’ main process, registered to the singleton instance of
VideoStreamManager. Alongside this is a subprocess: a simple wrapper around the C++ library
of ORB-SLAM, communicating to the sub-module via UNIX pipes.

The format used for data interchange between the subprocess and sub-module is JSON. This
allows for each video frame to be encoded as base64 and written to the stdin of the subprocess,
with output from the subprocess undertaken via writing JSON encoded strings to its stdout
via printf(). The output of the subprocess is either new 3D positions as computed by ORB-

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

26

SLAM, or information about the state of ORB-SLAM. This state information includes the current
state of initialisation, and the current status of feature tracking.

As mentioned in Section 2.4, the output positions from ORB-SLAM are in an arbitrary reference
frame due to the usage of monocular input. To remap this reference frame into metric units, the
author implemented a simple, yet effective, solution. First, the user is requested to translate the
multi-copter in 3D space to achieve initialisation of ORB-SLAM. Then, they are requested to
place the multi-copter on a flat surface, to move the multi-copter rightwards by exactly 50cm,
and finally forwards by the same distance. At the flat surface step, an average of the current
position is taken for the X and Y position components in the arbitrary reference frame. At the
end of the rightwards movement, a new average is taken for the X component, with the original
component subtracted, an absolute value taken of the result, with it finally being multiplied by
2. The same process occurs for the Y component in the forwards direction. This produces two
multiplicative factors that can be used to map incoming positions from ORB-SLAM into metric
units. A recommendation for future work has been given by Dr Steven Bagley (2018)[73] to
utilise an exact distance of 297mm. This is the length of an A4 sheet of paper, which provides
an improved measurement guide due to ease of access for end users.

Real-world testing showed that the author’s development machine can only run ORB-SLAM in
real-time if the majority of incoming video frames are ignored. It is assumed this will also be the
case for end users. Thus, only 3 video frames per second are forwarded to the localisation
subprocess, whereupon they are additionally downscaled to a resolution of 360×240px before
being processed by ORB-SLAM.

Further issues were also found during real-
world testing. Initially, the points extracted
by ORB-SLAM were to be visualised in the
GUI, with each frame of visualisation to be
encoded as base64 and written to the
subprocess’ stdout. However, this was not
possible – the volume of incoming data to
the localisation sub-module caused
corruption on Python’s memory heap,
leading to unexpected crashes. To resolve
this, the author utilised OpenCV’s support
for visualisation to render these points in a
separate window. An example of this
visualisation can be observed in Figure 19
to the left.

5.5 Flight Control and Photogrammetry

One additional sub-module for the GCS was also implemented, providing both waypoint-based
navigation and integration with the photogrammetry pipeline. This sub-module initially waits

Figure 19: Visualisation of detected points in ORB-SLAM

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

27

upon a MAVLink message to indicate the motors have been started (also: armed), and
subsequently requests a take-off via a MAVProxy API call. The system status panel provides a
user-facing control to initiate this motor arming. Once the altitude of the multi-copter reaches
±10cm of 1 metre above the start position, the main loop for flight control is begun.

Flight control can be summarised as follows: rotate 360 degrees stopping at each 45-degree
increment, request the next waypoint from a subclass of BaseWaypointGenerator, send the
resulting waypoint over a MAVLink message to the multi-copter, wait until it is navigated to by
ArduPilot, and then repeat the loop.

To rotate the multi-copter, data about the current attitude of the multi-copter is utilised. Before
a MAVLink message is sent to the multi-copter with a new relative yaw angle, the current yaw
angle of the multi-copter is recorded. A short busy loop is begun after the message is sent, with
an end condition such that the current yaw angle subtracted from the recorded angle is ±1
degree. This ensures that no further commands are sent to the multi-copter until there is high
confidence the rotation has fully completed. The time taken to undertake this yaw is specified in
the MAVLink message to be 4 seconds, to ensure ORB-SLAM does not lose localisation tracking
whilst undertaking the rotation. It was found during real-world testing that rapid rotation
would lead to ORB-SLAM becoming disorientated, likely due to too few triangulated features
present in the newly observed scene. This potentially may lead to undefined multi-copter
behaviour.

Waypoint generation is provided by a subclass of BaseWaypointGenerator, in this case
ManualWaypointGenerator, contained within the sub-module’s instance. As can be inferred,
implementation of automated waypoint generation was not completed at the time of writing.
Instead, a small window is currently presented to the user to manually specify each new
waypoint relative to the multi-copter’s current spatial location.

The integration of the photogrammetry pipeline – COLMAP and openMVS – was completed to
some degree. Whilst the process of dense reconstruction is implemented within the
photogrammetry pipeline, no code is present to commence this after a flight has ended. Though,
code is present to record images to the filesystem during a flight, allowing for dense
reconstruction to still be undertaken manually. For this purpose, a separate shell script is
present in the source code. Incidentally, this shell script was utilised to produce the example
output displayed Figure 5.

Through utilising this shell script, it was found the generation of both sparse point clouds and
the final dense reconstruction have a major issue: generation is CPU-bound on all operating
systems but Windows, with the time taken for point generation being far too excessive as a
result. Therefore, utilising this sparse cloud for autonomy purposes is be infeasible. Plus, the
pre-existing implementation of ORB-SLAM prevents the photogrammetry pipeline from being
undertaken for many users, due to its own CPU resource usage. Therefore, the multi-copter
would be required to idle whilst airborne for multiple minutes towards the end of a flight, due to
the size of the image dataset at that time, when requesting a waypoint.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

28

Thus, future work will require transitioning to an alternative Visual SLAM algorithm, which
must provide an improved point cloud to enable autonomous waypoint generation. Even after
this adjustment, the photogrammetry pipeline may only be undertaken at the end of a flight; for
any Visual SLAM algorithm, its subprocess must be first be exited to increase the availability of
compute resources, which cannot occur during flight.

6 Evaluation

6.1 Test Flights for Implemented Ground Control Software

Once the majority of the ground control software (GCS) had been implemented, indoor test
flights were undertaken to ascertain its quality.

The first flight saw a null result, due to ArduPilot refusing to arm the motors without a GPS
fix. This was due to ArduPilot’s Extended Kalman Filter (EKF)[57] refusing
GPS_INJECT_DATA messages containing faux GPS data from the GCS. This was resolved by
tuning the GPS_TYPE parameter within ArduPilot, specifying a value of 14 to signify the
EKF to accept these messages as GPS input. Furthermore, the messages themselves were
required to be modified to provide a low, yet non-zero, value defining the accuracy of the faux
GPS data. This was hardcoded to a value of 1, resulting in the EKF accepting faux GPS data
without issue.

The second flight saw the motors again refusing to arm. ArduPilot provides a failsafe system
to ensure a multi-copter returns to land if its battery level drops below a specified value. It was
discovered the author has misconfigured this failsafe, leading to it triggering whilst already on
land. Therefore, the motors refused to arm, due to ArduPilot believing the failsafe had
successfully caused the multi-copter to land. The resolution was to adjust the voltage multiplier
parameter applied to the detected battery voltage on-board the multi-copter, producing
corrected battery level outputs above the failsafe’s activation value.

The third test flight saw the motors correctly arming, but due to the high speed the propellers
were rotating the author activated a kill-switch, implemented for safety reasons. Unfortunately,
this lead to a rapid unexpected disassembly of the propellers, with all four making contact with
the ceiling of the room used as a test site. Upon inspection, it was found the motors were
installed on the multi-copter incorrectly, allowing the propellers to loosen their fastenings.

Due to the need to activate the kill-switch, the author has inferred the multi-copter constructed
is overly powerful for indoor flight, to the degree of risk to personal safety. As a result, the code
implementing flight control has not been tested to its fullest extent.

6.2 Localisation Accuracy

Of note is the accuracy of localisation afforded to the multi-copter. Provided the calibration
procedure described in Section 5.4 produced correct multiplicative factors, empirical testing

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

29

showed accuracy to typically be within ±10cm whilst airborne. However, this accuracy is
reduced to within ±2m when the multi-copter is placed such that a significant proportion of its
view comprises of a flat, featureless surface. In effect, a greater accuracy was observed whilst the
multi-copter was held aloft and can be assumed to be similar during flight.

In cases whereupon the multiplicative factors were not correct, real-world translations of 50cm
producing remapped translations of up to 5m have been observed. This incorrectness typically
results from placing the multi-copter centrally on a flat surface and translating it from this point
for calibration. This introduces the inaccuracy of ±2m, causing the assumption that the
magnitude of raw position data remains stable whilst calibrating to be false. No possibility to
correct this error is present at the time of writing, requiring the GCS to be restarted to allow a
new calibration procedure to be undertaken. This manual correction can be implemented at a
future date, with a single button to request the localisation sub-module to restart calibration.

It is recommended that further work should utilise an RGB-D camera if available. This usage
will avoid the need to remap calculated positions into the metric reference frame, thus reducing
the potential for error in localisation to occur. That said, the calibration procedure provided for
monocular input does ensure a suitably accurate remapping to metric units whilst airborne.

6.3 Safety and Privacy

As the initial outdoor testing outlined in 4.3 found, safety is a key concern when working with
multi-copters. This typically relates to the exposed propellers for the production of thrust, which
may spin at velocities great enough to cause injury; this is the case with the multi-copter built.
Therefore, multiple safety measures are in place.

Primarily, a kill-switch is provided to the user in the event of an emergency. This is
implemented as the sending of a MAVLink message to land at the current location, intended to
override any other command that may be in progress. In the GUI, this is presented as a button
appropriately entitled Stop. Furthermore, a hardware-based kill-switch has been configured for
the manual flight transmitter used during testing. This transmitter has been provided by the
external sponsor, Dr Michael Pound, due to the issues found with the gamepad initially used for
outdoor testing as in Section 4.3. This will still function if the multi-copter leaves WiFi coverage
to the ground station computer and was required to be utilised in the testing described in
Section 6.1. The multi-copter also has been configured to require such a connected transmitter,
to ensure that manual control can always be provided if necessary.

Furthermore, ArduPilot itself has a set of in-built safety features. These features can be
generalised to be failsafes, with one such failsafe encountered during indoor testing. These
failsafes may be triggered via: a low battery level, a lack of connection to the ground station
computer, or bad heading estimates[74]. This list is not exhaustive; other failsafes not useful for
this project are also available. Upon triggering of any, the multi-copter will either immediately
attempt a landing, or loiter in place. For this project, this behaviour has been configured to only

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

30

attempt a landing, due to the loiter behaviour requiring GPS data. This data will not be present
if outside WiFi coverage.

Since data is produced by the installed camera, privacy of others must be respected. The data
produced by the camera is only recorded for the purposes of undertaking photogrammetry on
the resultant images. That said, it is indeed being recorded. Therefore, to protect privacy when
undertaking testing during development, image capture for the photogrammetry pipeline was
only enabled whilst no other person was present at the test site. Due to the photogrammetry
pipeline being the last major component developed, image capture was not a concern throughout
the majority of development. With regards to ORB-SLAM and its usage of camera data, its
internal point cloud is not saved to the filesystem. Therefore, no abuse can occur from the
resultant output of its image processing.

When utilising the implemented GCS as an end-to-end system to map an environment, the
author highly recommends ensuring the indoor space to be emptied of others prior to a flight. If
this is not possible, it is strongly urged to ensure others are aware a flight is to be undertaken,
for both privacy and safety reasons.

6.4 Legal Considerations

Multi-copters and other aerial hobbyist vehicles
are an emerging concern in legislation. The UK
Civil Aviation Authority (CAA) has published a
set of guidelines[75] for hobbyist flight, summarised
as: fly at least 50 metres away from other people
and property, fly below 120 metres, and to remain
outside any restricted airspace including airports.
The author was required to find a suitable
location when undertaking outdoor testing. Such
a location was found on the Jubilee Campus of
the University of Nottingham. This location is
marked on the map displayed in Figure 20. Note
that the guidelines for indoor flight are equal to
those for outdoors, though with the added benefit
that it is easier to control access to the venue a
flight is occurring within.

Over the summer of 2017, the UK government defined new incoming regulations for aerial
hobbyist vehicle owners[76]. Once in effect, these regulations will require owners to register any
aerial vehicle they own weighing over 250 grams, and to sit a safety awareness exam. This
legislation was not introduced during the Project, and so did not pose any restriction on
development. However, the author will be required to undertake both of these additional
ownership steps at a later date, since the constructed multi-copter weighs roughly 600 grams.

Figure 20: Location of outdoor flights
Map data © Google 2018: maps.google.com

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

31

7 Summary and Reflections

7.1 Coverage of Objectives

A key measure of this dissertation’s success can be derived through comparing the implemented
software project against the expected objectives laid out in Section 1.3.

The first objective was to implement duplex communications between the multi-copter and the
ground control software (GCS). This has been implemented through the tight integration with
MAVProxy, deriving from the choice to utilise ArduPilot as the flight stack and MAVLink as
the communication protocol. Furthermore, the implementation of the Remote Utility as detailed
in Section 4.2.4 extends this integration, allowing for communicating directly to the underlying
OS of the multi-copter through which to enact system commands.

Second was that of providing effective indoor localisation. This is arguably the most significant
component of the implemented software project. This is due to the requirement of configuring
and accessing an incoming video stream through gstreamer, along with subsequently piping
each individual video frame into the integration with ORB-SLAM. Effectively, the
implementation of localisation provides the required intricate inter-communication between
myriad existing works, alongside a solution to the metric scale problem associated with
monocular input to ORB-SLAM.

The third objective was to integrate with an existing photogrammetry library for 3D model
production for the end system output, along with an interim model for autonomous waypoint
generation. This has been completed to an extent; COLMAP and openMVS have been integrated
to the degree such that dense reconstruction can be undertaken manually. However, neither an
interim 3D model nor a point cloud is outputted such that intelligent reasoning for flightpaths
can be undertaken. This is due to a late decision to focus upon instead providing manual
waypoint generation, to afford some useful utility to the final GCS.

Fourth was to autonomously produce a flightpath for the multi-copter to follow, such that a
useful image dataset for photogrammetry can be produced. Additionally, the fifth objective was
to assess differing algorithms producing flightpaths on their output dataset quality. These
objectives were instead adapted to focus upon manual waypoint generation, due to the rapidly
approaching dissertation deadline; focus was required upon the authoring of the dissertation
document. As a result, the fourth objective has been implemented with modifications as
described in Section 5.5, whereupon the user is requested to manually provide a new waypoint
relative to the multi-copter. However, there is no possibility to assess the resultant flightpath as
per objective five. This requires assessment of the user’s judgement regarding the next waypoint,
falling within the field of Psychology.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

32

7.2 Project Management

7.2.1 Time Management

As can be inferred, the progress of the Project did not coincide with some milestones set out in
the dissertation proposal document. This discrepancy has been driven by two factors: an
underestimation of the time commitments required in the fourth year of university, along with
an underestimation of the intricacy inherent in constructing a multi-copter. The latter caused
the largest disruption; the initial milestone for the completion of construction was due to be
reached by the end of October 2017. In actuality, this was mid-December 2017. This is due to
this milestone not accounting for the need for outdoor testing and subsequent re-tuning of the
multi-copter, with the latter being unexpected. As a result, all other milestones were forced
backwards by two months.

Much effort was invested into recovering this loss of time. This was a factor in the decision of
utilising MAVProxy as a basis to the ground control software (GCS), leading to the time
required for implementing duplex communication being greatly reduced. As a result, other
objectives of the dissertation could still be met in the remaining time, due to their reliance on a
functional duplex link to the multi-copter. Outside of this decision, the usage of ZenHub as
described in Section 3.1 for task organisation has been instrumental in ensuring that a degree of
time management has been upkept in the face of this time discrepancy. In the course of his
previous dissertation, the author learnt to “generate a list of tasks for the coming weeks, with a
granularity of to the day if needs be, taking into account variance that can occur from
unexpected issues” (Clarke, 2017)[77] through which to balance time. Each milestone was thus
decomposed into separate tasks and added to the task pipeline offered by ZenHub. A useful
feature provided by this software was found to be that of “Epics”: a collection of tasks, with each
milestone comprising an Epic with its constituent tasks grouped together.

Though, due to underestimation of other time commitments associated with the fourth year of
university, only a modicum of time was reclaimed. These commitments were typically that of
coursework, which themselves unexpectedly spanned multiple weeks. Thus, this lead to less time
availability for the dissertation than had been planned. Furthermore, much of the developmental
work on the GCS, such as for localisation, required a live connection to the multi-copter.
Therefore, this necessitated access to the multi-copter which was not always possible; it was
typically stored at the author’s residence. As a result, even if a window of time became available
for development such as between teaching lectures, the journey time required for hardware
access did not allow for development to reasonably occur.

On reflection, the allocation of time provided in both the dissertation proposal and the interim
report was appropriate given the knowledge available at the time. It was not known ahead-of-
time about the intricacy involved in multi-copter construction, nor were deadlines of other
commitments published. These deadlines were not assumed to be non-existent however, with the
period of March 2018 through to the start of April 2018 defined as covering them within the
Gantt chart produced in the dissertation proposal document. With the industrial action

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

33

throughout the latter semester of the dissertation[78] came adjusted external deadlines, leading to
the balance of workload also shifting to suit. This lead to greater time being spent on
courseworks to take advantage of these adjusted deadlines, in lieu of the dissertation’s software
project.

7.2.2 External Sponsor

As outlined in Section 1.5, Dr Michael Pound of the University of Nottingham was contacted to
be an external sponsor to the Project. Initially, his role was to be advisory, providing input as to
the most appropriate approach in which to develop the ideas of the dissertation for the hobbyist
multi-copter community.

However, due to his expertise in the construction and flight of aerial hobbyist vehicles, it was
found his role became that of an instructor, providing useful insights into improving the
construction of the multi-copter. Furthermore, he provided the transmitter mentioned in Section
6.3, allowing for improved testing of the multi-copter. This has proved instrumental in ensuring
the hardware constructed was tested to a suitable degree.

7.2.3 Supervisory Meetings

Throughout the duration of the dissertation, supervisory meetings with Dr Steven Bagley have
been held weekly, except during the month of January. As stated in Section 3.1, these meetings
were typically treated as end-of-sprint meetings, and as such revolved around progress updates
given to the supervisor. During the final weeks of the dissertation, meetings typically focused
upon a holistic overview of the implemented software project. This allowed for a discussion on
the focus given by the dissertation document to varying aspects of the software project,
alongside the recommendation of useful references.

7.3 Future Development

Due to the unfinished state of the dissertation’s software project, more work post-submission
must be undertaken before it is of full utility to the general hobbyist multi-copter community.
To foster a collaborative approach to this post-submission work, the author has published the
software produced under the GNU Public License version 2 (GPLv2), chosen due to MAVProxy
also being licensed under the GPLv2 and thus restricting choice of licensure. The URL to the
published git repository can be found in Section 8.1.

To ease future development efforts, multiple measures have been taken. The first is that of
autonomous waypoint generation. Stubs for its corresponding subclass of BaseWaypointGenerator
have been provided, removing the need to design the subclass before its implementation, and
thus accelerating its future development. In addition, the build process for the entire project has
been automated. This comprises of two shell scripts: the first automatically installs any required
dependencies such as wxPython and gstreamer, albeit for macOS only. The second
automates the building of each discrete system component. First, the CMake build system for

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

34

the localisation subprocess is undertaken, with the resulting binary packaged as the localisation
subprocess. Next, the Python setup script for MAVProxy is ran, producing a runnable software
package containing all implemented components. As a result, any changes to the implemented
software project can be tested by executing this second shell script.

By publishing source code, some utility is afforded to the hobbyist multi-copter community even
without a full working system. Work had been begun by Dudley (2017)[79] to integrate ORB-
SLAM into APM Planner 2.0, with the reference implementation achieved by the author
providing a beneficial springboard into completing this work. Some modification will be required
to integrate into APM Planner 2.0 itself, though is not an impossible task if so desired.

Furthermore, at the time of implementation ArduPilot did not support receiving raw visual
position estimates, leading to the usage of faux GPS co-ordinates as described in Section 3.6. As
of March 8th 2018 however, support for the GLOBAL_VISION_POSITION_ESTIMATE
MAVLink message[80] was added to the flight stack. This accepts raw position estimates in even
an arbitrary reference frame, removing the need for faux GPS co-ordinates entirely. The author
recommends that future work should transition to sending positioning data via this message,
though the included ArduPilot binary in the OS image for the multi-copter will need
updating.

Regarding multi-copter construction, a viable alternative for future work would be to purchase a
small WiFi-controlled multi-copter. This will require bridging ArduPilot over a reverse-
engineered connection to such a multi-copter, though would likely consume less time than the
approach taken in this dissertation. As a result, a greater focus on GCS implementation would
be possible. Furthermore, this addresses the issue of the constructed multi-copter being overly
powerful as found in Section 6.1, with a smaller hardware platform posing a lesser personal
safety risk. Unfortunately, this was not a viable solution for this dissertation, as the safety issue
with the constructed multi-copter was discovered in the final weeks of development.

7.4 Achievements and Contributions

In the course of such an overly ambitious software project, much has been achieved. A holistic
achievement is that of the implemented GCS; even with adversity in the form of time
discrepancy, it provides functional indoor localisation without GPS, and a manual approach to
photogrammetric indoor mapping. To achieve this in part, a deep understanding of the interplay
between the hardware and software of a modern multi-copter has been required of the author.
This understanding lead to a greater appreciation of Linux systems, such as that of providing
new functionality to be started on system boot through systemd. Regarding hardware
specifically, the author has learnt to solder components such as GPIO pins and wire connectors
to produce effective electrical contacts. Amusingly, adeptness in soldering only arose after a
heat-related injury was sustained from the soldering iron.

Aside from the multi-copter’s OS image, the majority of the GCS has been implemented in
Python. Prior to the commencement of this dissertation, the author had not utilised this

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

35

language other than for small learning exercises in 2010. The resultant system architecture of
the GCS is a testament to the rapid familiarity gained by the author for Python. The full gamut
of object-orientated paradigms are present, alongside usage of language-specific features such as
pickling and slicing, for object serialisation and for simplified substring obtaining respectively.

In terms of the discrete components comprising the GCS, the implemented localisation
component provides the greatest contribution to the wider world. By adhering to existing
standards for video stream input, and utilising cross-platform technologies such as gstreamer
and indeed Python, the author has produced a reference implementation for providing visual
position estimates to ArduPilot. The solution to the arbitrary reference frame is of note, due
to its simple calibration procedure. Even in the case no other component is utilised by the multi-
copter community, this reference implementation can be ported to other software such as APM
Planner 2.0 with little effort.

Aside from the merits of the implemented GCS, further appreciation for time management has
been gained. Due to the mis-estimated initial milestone for multi-copter construction, an effort
has been made to analyse its root cause. As Section 7.2.1 notes, this was as a result of not
anticipating the need for additional re-tuning of the multi-copter to allow indoor flight. Ergo, it
was driven by a lack of prior knowledge. Future projects can combat this through researching
alternative approaches to tasks relying on newly gained knowledge. This research can be
combined with a time assessment analysis, undertaken perhaps weekly, to ascertain whether
these alternative approaches should be utilised in lieu of the current approach. In the case of
this dissertation, an alternative approach would be to reverse-engineer a small WiFi-connected
multi-copter rather than constructing the multi-copter, as suggested in Section 7.3.

7.5 Final Remarks

In summary, every effort has been made to meet the objectives defined by this dissertation
throughout the implementation of the software project. In the cases of the fourth and fifth
objectives, adaptions were undertaken to provide an end software package that can be extended
to meet the full project aim. Whilst it is unfortunate that this end package could not be tested
with the constructed multi-copter due to safety concerns, measures have been put into motion
to ensure future development can meet the original aim of autonomous indoor mapping.

At the commencement of the dissertation, the author would have found this document wholly
invaluable, detailing potential issues that must be overcome. Perhaps a different approach would
be taken regarding hardware, though without failure no experience can be gained. Regarding
experience, this has entailed the learning of a new programming language, understanding of
hardware specific to the domain of aerial vehicles, alongside the most current work in robotics
research. It is upon this breadth of experience the author is able to state this dissertation has
been rewarding, giving a greater appreciation for both self-management, and for the undertaking
of large-scale software projects.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

36

8 Bibliography

8.1 Further Reading

MAVLink supported messages
Meier, L. (Updated 2018). MAVLINK Common Message Set. Available at:
http://mavlink.org/messages/common. [Accessed 18th April 2018].

Published git repository
Clarke, M. (2018). Indoor 3D Mapping. Available at: https://github.com/Matchstic/indoor-3d-mapping.
[Accessed 22nd April 2018].

8.2 References

1. Google Inc. (2005). Google Maps. Available at: https://www.google.co.uk/maps. [Accessed 16th April
2018].

2. Schenk, T. (2005). Introduction to Photogrammetry. Available at:
http://www.mat.uc.pt/~gil/downloads/IntroPhoto.pdf. [Accessed 16th April 2018].

3. Al Khalil, O., Grussenmeyer, P., and Nour El Din, M. (2001). 3D Indoor Modelling of Buildings Based
on Photogrammetry and Topologic Approaches. In: XVIII CIPA International Symposium. p1-7�

4. Pix4D SA. (2017). Indoor Mapping Game Plan. Available at: https://pix4d.com/indoor-mapping-game-
plan/. [Accessed 12th October 2017].

5. Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D., Seitz, S. M., and Fox, D. (2011). Interactive 3D
Modelling of Indoor Environments with a Consumer Depth Camera. In: Proceedings of the 2011 ACM
Conference on Ubiquitous Computing. p75-84.

6. Microsoft Robotics. (2012). Kinect Sensor. Available at: https://msdn.microsoft.com/en-
gb/library/hh438998.aspx. [Accessed 16th April 2018].

7. Díaz-Vilariño, L., Khoshelham, K., Martínez-Sánchez, J., and Arias, P. (2015). 3D Modelling of
Building Indoor Spaces and Closed Doors from Imagery and Point Clouds. In: Sensors. 15 (2), p3491-
3512.

8. Budroni, A. and Boehm, J. (2010). Automated 3D Reconstruction of Interiors from Point Clouds. In:
International Journal of Architectural Computing. 8 (1), p55-73.

9. LiDAR UK. (2011). How does LiDAR work? Available at: http://www.lidar-uk.com/how-lidar-works/.
[Accessed 16th April 2018].

10. Lehtola, V. V., Kaartinen, H., Nüchter, A., Kaijaluoto, R., Kukko, A., Litkey, P., Honkavaara, E.,
Rosnell, T., Vaaja, M. T., Virtanen, J.-P., Kurkela, M., El Issaoui, A., Zhu, L., Jaakkola, A., and
Hyyppä, J. (2017). Comparison of the Selected State-Of-The-Art 3D Indoor Scanning and Point Cloud
Generation Methods. In: Remote Sensing. 9 (8), 796.

11. Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part I. In: IEEE
Robotics & Automation Magazine. 13 (2), p99-110.

12. Skydio, Inc. (2018). Technology. Available at: https://www.skydio.com/technology/. [Accessed 16th
April 2018].

13. Franklin, D. (Updated 2018). Jetson TX2. Available at: https://elinux.org/Jetson_TX2. [Accessed
16th April 2018].

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

37

14. Liang, O. (Updated 2017). Complete Mini Quad Parts List – FPV Quadcopter Component Choice.
Available at: https://oscarliang.com/250-mini-quad-part-list-fpv/. [Accessed 16th April 2018].

15. Upton, E. (2017). New product! Raspberry Pi Zero W joins the family. Available at:
https://www.raspberrypi.org/blog/raspberry-pi-zero-w-joins-family/. [Accessed 12th October 2017].

16. Emlid Ltd. (Updated 2018). Navio2. Available at: https://emlid.com/navio/. [Accessed 17th April
2018].

17. Erle Robotics. (Updated 2017). An open autopilot daughter-board for the Raspberry Pi Zero.
Available at: http://erlerobotics.com/blog/pxfmini/. [Accessed 7th December 2017].

18. Scanse LLC. (2017). Affordable Scanning LiDAR for Everyone. Available at: http://scanse.io/.
[Accessed 17th April 2018].

19. Intel Corporation. (2018). Intel® RealSense™ Depth Camera D435. Available at:
https://click.intel.com/intelr-realsensetm-depth-camera-d435.html. [Accessed 17th April 2018].

20. Intel Corporation. (2016). Intel® RealSense™ Camera SR300. Available at:
https://software.intel.com/en-us/realsense/sr300. [Accessed 17th April 2018].

21. Raspberry Pi Foundation. (2016). Camera Module V2. Available at:
https://www.raspberrypi.org/products/camera-module-v2/. [Accessed 17th April 2018].

22. Pagnutti, M. A., Ryan, R. E., Cazenavette, G. J., Gold, M. J., Ryan Harlan, R., Leggett, E., and
Pagnutti, J. F. (2017). Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for
scientific and engineering purposes. In: Electronic Imaging. 26 (1).

23. ArduPilot. (2016). ArduPilot :: About. Available at: http://ardupilot.org/about. [Accessed 7th
December 2017].

24. PX4 Dev Team. (Updated 2017). PX4: The Professional Autopilot. Available at: http://px4.io/.
[Accessed 17th April 2018].

25. Dronesmith Technologies. (2016). Why We Chose PX4 (vs APM) as Luci’s Default Firmware.
Available at: https://medium.com/@Dronesmith/why-we-chose-px4-vs-apm-as-lucis-default-firmware-
ea39f4514bef. [Accessed 17th April 2018].

26. The Linux Foundation. (2017). HOWTO setup Linux with PREEMPT_RT properly. Available at:
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup.
[Accessed 7th December 2017].

27. Meier, L. (2009). MAVLink Developer Guide. Available at: https://mavlink.io/en/. [Accessed 7th
December 2017].

28. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., and Ng,
A. (2009). ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software.
3.

29. International Organization for Standardization. (2015). ISO 11898-1:2015 – Road vehicles – Controller
area network (CAN) – Part 1: Data link layer and physical signalling. 2nd Edition.

30. The Internet Engineering Task Force. (2016). RFC 7826 – Real-Time Streaming Protocol Version
2.0. Available at: https://tools.ietf.org/html/rfc7826. [Accessed 17th April 2016].

31. PX4 Dev Team. (Updated 2018). uORB Messaging. Available at:
https://dev.px4.io/en/middleware/uorb.html. [Accessed 17th April 2018].

32. Dronecode Project, Inc. (Updated 2018). What is Dronecode? Available at:
https://www.dronecode.org/about/. [Accessed 17th April 2018].

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

38

33. Misra, P. and Enge, P. (2011). GPS: Signals, Measurements, and Performance. 2nd Edition.
Massachusetts, US: Ganga-Jamuna Press.

34. Mertikas, S. P. (1983). Differential Global Positioning System Navigation: A Geometrical Analysis.
MSc Thesis. University of New Brunswick, Department of Surveying Engineering. Canada.

35. Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual Odometry. In: Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. 1.

36. Cheng, Y., Maimone, M., and Matthies, L. (2005). Visual odometry on the Mars exploration rovers.
In: 2005 IEEE International Conference on Systems, Man and Cybernetics. 1, p903-910.

37. Yousif, K., Bab-Hadiashar, A., and Hoseinnezhad, R. (2015). An Overview to Visual Odometry and
Visual SLAM: Applications to Mobile Robotics. In: Intelligent Industrial Systems. 1 (4), p289-311.

38. Mur-Artal, R., Montiel, J. M. M., and Tard’os, J. D. (2015). ORB-SLAM: A Versatile and Accurate
Monocular SLAM System. In: IEEE Transactions on Robotics. 31 (5). p1147-1163.

39. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient alternative to SIFT
or SURF. In: IEEE International Conference on Computer Vision. p2564-2571.

40. Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-Scale Direct Monocular SLAM. In:
Proceedings of the 2014 European Conference on Computer Vision. p834-849.

41. GStreamer Team. (Updated 2018). GStreamer: open source multimedia framework. Available at:
https://gstreamer.freedesktop.org/. [Accessed 17th April 2018].

42. Bala, S. (2016). H.264 is Magic. Available at: https://sidbala.com/h-264-is-magic/. [Accessed 17th
April 2018].

43. Library of Congress. (2016). MJPEG (Motion JPEG) Video Codec. Available at:
https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml. [Accessed 17th April 2018].

44. Micheletti, N., Chandler, J. H., and Lane, S. N. (2015). Structure from Motion (SfM)
Photogrammetry. In: Geomorphological Techniques. Chapter 2 (Sec. 2.2), p1-12.

45. Furukawa, Y. and Hernández, C. (2015). Multi-View Stereo: A Tutorial. In: Foundations and Trends
in Computer Graphics and Vision. 9 (1-2), p1-148.

46. Falkingham, P. (2017). Free photogrammetry software review: 2017. Available at:
https://pfalkingham.wordpress.com/2017/12/17/free-photogrammetry-software-review-2017/. [Accessed
18th April 2018].

47. Schönberger, J. L. and Frahm, J.-M. (2016). Structure-from-Motion Revisited. In: Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition. p4104-4113.

48. OpenMVS authors. (Updated 2017). Open Multi-View Stereo Reconstruction Library. Available at:
https://cdcseacave.github.io/openMVS/. [Accessed 18th April 2018].

49. Scrum Alliance. (2013). What Is Scrum? Available at: https://www.scrumalliance.org/why-scrum.
[Accessed 7th December 2016].

50. ZenHub. (Updated 2017). A better way to manage your GitHub Issues. Available at:
https://www.zenhub.com/. [Accessed 7th December 2017].

51. Erle Robotics S.L. (Updated 2018). Erle Robotics | Bringing the next generation of robotic brains.
Available at: http://erlerobotics.com/blog/. [Accessed 18th April 2018].

52. Mojang Synergies AB. (Updated 2018). Official site | Minecraft. Available at:
https://minecraft.net/en-us/. [Accessed 18th April 2018].

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

39

53. freedesktop.org. (Updated 2017). systemd System and Service Manager. Available at:
https://www.freedesktop.org/wiki/Software/systemd/. [Accessed 18th April 2018].

54. CanberraUAV. (2012). A UAV ground station software package for MAVLink based systems.
Available at: http://ardupilot.github.io/MAVProxy/html/index.html. [Accessed 7th December 2017].

55. FFmpeg Developers. (Updated 2018). A complete, cross-platform solution to record, convert and
stream audio and video. Available at: http://ffmpeg.org/. [Accessed 18th April 2018].

56. QGroundControl. (Updated 2017). Intuitive and Powerful Ground Control Station for PX4 and
ArduPilot UAVs. Available at: http://qgroundcontrol.com/. [Accessed 18th April 2018].

57. ArduPilot Dev Team. (2016). EKF2 Estimation System. Available at:
http://ardupilot.org/dev/docs/ekf2-estimation-system.html. [Accessed 18th April 2018].

58. Meier, L. (Updated 2018). GPS_INJECT_DATA. Available at:
http://mavlink.org/messages/common#GPS_INJECT_DATA. [Accessed 18th April 2018].

59. fileformat.info. (2013). Wavefront OBJ File Format Summary. Available at:
http://www.fileformat.info/format/wavefrontobj/egff.htm. [Accessed 18th April 2018].

60. Jacobs, A. (2017). How to choose the right size motors & ESCs for your Drone, quadcopter, or
Multirotor build. Available at: https://quadquestions.com/blog/2017/02/22/choose-right-size-motors-
drone/. [Accessed 7th December 2017].

61. Parrot SA. (Updated 2017). Parrot Bebop 2. Available at:
https://www.parrot.com/global/drones/parrot-bebop-2. [Accessed 7th December 2017].

62. NXP Semiconductors. (2014). I2C-bus specification and user manual. 6th Edition. Available at:
https://www.nxp.com/docs/en/user-guide/UM10204.pdf. [Accessed 18th April 2018].

63. Suchanek, M. (2012). Debian Repository Format. Available at:
https://wiki.debian.org/DebianRepository/Format. [Accessed 7th December 2017].

64. USB Implementers Forum (2001). On-The-Go Supplement to the USB 2.0 Specification. Rev. 1.
Available at: http://www.usb.org/developers/onthego/otg1_0.pdf. [Accessed 18th April 2018].

65. Chaharbakhshi, A. (2017). Raspberry Pi Zero W Simultaneous AP and Managed Mode Wifi.
Available at: https://albeec13.github.io/2017/09/26/raspberry-pi-zero-w-simultaneous-ap-and-managed-
mode-wifi/. [Accessed 19th April 2018].

66. Mitchell, M. (2016). hostapd: execute a command when there is new connection established. Available
at: https://superuser.com/a/1152298. [Accessed 19th April 2018].

67. Internet Engineering Task Force. (2011). The WebSocket Protocol. Available at:
https://tools.ietf.org/html/rfc6455. [Accessed 7th December 2017].

68. Pagnutti, M. A., Ryan, R. E., Cazenavette, G. J., Gold, M. J., Ryan Harlan, R., Leggett, E., and
Pagnutti, J. F. (2017). Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for
scientific and engineering purposes. In: Electronic Imaging. 26 (1).

69. Raspberry Pi Foundation. (2016). Camera Module. Available at:
https://www.raspberrypi.org/documentation/hardware/camera/README.md. [Accessed 19th April 2018].

70. wxPython Team. (Updated 2018). Welcome to wxPython! Available at: https://www.wxpython.org/.
[Accessed 19th April 2018].

71. Craig, I (1995). Blackboard Systems. New Jersey, US: Ablex Publishing Corporation. p15-51.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

40

72. The GTK+ Team. (Updated 2017). GdkPixbuf.Pixbuf. Available at: https://lazka.github.io/pgi-
docs/GdkPixbuf-2.0/classes/Pixbuf.html. [Accessed 19th April 2018].

73. Bagley, S. (2018). Private Conversation with Matthew Clarke. University of Nottingham, Department
of Computer Science. UK.

74. ArduPilot Dev Team. (2016). Failsafe. Available at: http://ardupilot.org/copter/docs/failsafe-landing-
page.html. [Accessed 20th April 2018].

75. UK Civil Aviation Authority. (Updated 2017). The Drone Code. Available: http://dronesafe.uk/wp-
content/uploads/2016/11/Dronecode.pdf. [Accessed 20th April 2018].

76. UK Government. (2017). Unlocking the UK's High-Tech Economy: Consultation on the Safe Use of
Drones in the UK. United Kingdom, London. Available at:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/631638/unlocking-the-
uks-high-tech-economy-consultation-on-the-safe-use-of-drones-in-the-uk-government-response.pdf.
[Accessed 8th December 2017].

77. Clarke, M. (2017). Remote class sharing over process and machine boundaries. MSc Dissertation.
University of Nottingham, Department of Computer Science. UK.

78. University and College Union. (2018). UCU announces 14 strike dates at 61 universities in pensions
row. Available at: https://www.ucu.org.uk/14-strike-dates. [Accessed 21st April 2018].

79. Dudley, S. (2017). ORB-SLAM2 for Ardupilot. Available at:
https://github.com/SamuelDudley/ORB_SLAM2. [Accessed 21st April 2018].

80. Barker, P. (2018). GCS_MAVLink: feed vision position data into AHRS. Available at:
https://github.com/ArduPilot/ardupilot/commit/a5a36c04d1056a2864267e9a84dc8edc90d9aa84. [Accessed
22nd April 2018].

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

 41

9 Appendices

9.1 Appendix A – Multi-copter Bill of Materials

Raspberry Pi Zero W
Link: https://thepihut.com/collections/raspberry-pi-
store/products/raspberry-pi-zero-w
Cost: £15.60
Weight: 9g

Raspberry Pi Camera Module
Link: https://thepihut.com/collections/raspberry-pi-
camera/products/raspberry-pi-camera-module
Cost: £24.00
Weight: 3.4g

Erle Robotics PXFmini
Link: http://erlerobotics.com/blog/product/pxfmini/
Cost: €69.00 (around £60.00)
Weight: 83g

Erle Robotics Power Module
Link:
https://erlerobotics.com/blog/product/power_mod/
Cost: €30.00 (around £26.00)
Weight: 50g

Martian II 250 (Frame)
Link: https://www.banggood.com/Martian-250-
250mm-4mm-Arm-Thickness-Carbon-Fiber-Frame-
Kit-w-PDB-For-FPV-Racing-p-
1064323.html?rmmds=category
Cost: £21.60
Weight: 130g

Battery (LiPo, 3S, 2200mAh, 40C)
Link: https://hobbyking.com/en_us/multistar-racer-
2200mah-3s-40c.html
Cost: £13.60
Weight: 195g

4x Racerstar RS30A V2 30A (ESCs)
Link: https://www.banggood.com/4X-Racerstar-
RS30A-V2-30A-Blheli_S-ESC-OPTO-2-4S-Support-
Oneshot42-Multishot-for-FPV-Racer-p-
1074733.html?rmmds=category
Cost: £35.90 (around £9 each)
Weight: 25.04g (6.26g each)

4x MultiStar V-Spec 2205 (Motors)
Link: https://hobbyking.com/en_us/2205-2350kv-
ccw-v-spec-mongoose.html
Cost: £35.68 (£8.92 each)
Weight: 120g (30g each)

4x Gemfan Multirotor CRP Propeller 6x4.5
Link: https://hobbyking.com/en_us/gemfan-
multirotor-crp-propeller-6x4-5-black-cw-ccw-2pcs.html
Cost: £3.10 (2x packs for 4 blades in total)
Weight: negligible

Total cost: £235.48
Total weight: 618.54g

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

 42

9.2 Appendix B – Photography of Construction Process

1. Soldering GPIO pins onto the Raspberry
Pi Zero W

The Pi by default does not ship with GPIO
pins pre-attached to save on cost. These are
required for connection to the PXFmini.

2. Soldering bullet connectors to the ESCs

The ESCs purchased only have a solder
point to connect the motors to them, yet
the wires on the motors bought terminate in
2mm bullet connector plugs.

3. Partial construction of the frame

After soldering on the battery connector to
the Power Distribution Board (PDB) –
which provides power from the battery to
the ESCs and motors – it needed to be
installed in the frame to progress.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

 43

4. Solder ESCs to the PDB

The ESCs needed to be soldered to the PDB
to make an electrical connection. Care
needed to be taken to match up positive
and negative leads correctly.

5. Construct the rest of the frame

Self-explanatory, with the signal wires from
the ESCs also being routed through the
frame.

6. Screw on the motors and attach to the
ESCs

Each motor was screwed onto an arm of the
frame, and then plugged into the bullet
connectors prior soldered to the ESCs.

An autonomous drone system […] to effectively undertake indoor photogrammetry Matt Clarke

 44

7. Wire up everything to the PXFmini

The Raspberry Pi and PXFmini were
situated on the top of the frame, as they did
not fit inside the frame. The frame was later
modified to fit them correctly. The signal
wires were attached to the appropriate
output pins on the PXFmini; care was taken
to match counter-clockwise and clockwise
spinning motors to the correct outputs.

8. Attach propellers

The propellers were attached to the motors.
These needed to be matched to the rotation
of the motor; those marked with an “R” are
to be clockwise spinning. If incorrectly
matched, thrust will be directed upwards
instead.

9. Tidy up all connections

A small amount of electrical tape and zip
ties were used to secure cables out of the
way of the propellers.

